Spark 学习笔记03-运行
Spark 运行时架构
在分布式环境下,Spark 集群采用的是主/从结构。在一个 Spark 集群中,有一个节点负责中央协调,调度各个分布式工作节点。这个中央协调节点被称为驱动器(Driver)节点,与之对应的工作节点被称为执行器(executor)节点。驱动器节点可以和大量的执行器节点进行通信,它们也都作为独立的 Java 进程运行。驱动器节点和所有的执行器节点一起被称为一个 Spark 应用(application)。
Spark 学习笔记01-数据分区
在分布式程序中,通信的代价是很大的,因此控制数据分布以获得最少的网络传输可以极大地提升整体性能。和单节点的程序需要为记录集合选择合适的数据结构一样,Spark 程序可以通过控制 RDD 分区方式来减少通信开销。分区并不是对所有应用都有好处的——比如,如果给定 RDD 只需要被扫描一次,我们完全没有必要对其预先进行分区处理。只有当数据集多次在诸如连接这种基于键的操作中使用时,分区才会有帮助。我们会给出一些小例子来说明这一点。
共计 224 篇文章,28 页。